Preparation of Vinylic Sulphones by Peterson Olefination using Phenyl Trimethylsilylmethyl Sulphone

Donald Craig, Steven V. Ley,* and Nigel S. Simpkins
Departm:nt of Chemistry, Imperial College, London SW7 2AY
Gordon H. Whitham * and Michael J. Prior
The Dyson Perrins Laboratory, South Parks Road, Oxford, OX1 30Y

The anion generated from phenyl trimethylsilylmethyl sulphone using butyl-lithium in dimethoxyethane, readily reacts at $-78^{\circ} \mathrm{C}$ with various carbonyl compounds to afford vinylic sulphones on work-up at room temperature. The reaction conditions are tolerant of a number of otherwise reactive functional groups such as silyl ethers, cyclopropanes, esters, acetals, and epoxides. In ether solvent trapping of the intermediate alkoxide was possible by acylation.

The importance of vinylic sulphones in synthesis is now well established. ${ }^{1}$ Their diverse reactivity, including conjugate addition, ${ }^{2}$ cycloaddition, ${ }^{3}$ and deprotonation reactions ${ }^{4}$ makes methods of preparation of these useful synthetic intermediates important. ${ }^{5}$ We now report in full ${ }^{6}$ details of a modified Peterson olefination procedure ${ }^{7}$ allowing the conversion of both aldehydes and ketones to vinyl sulphones.

Results and Discussion

Phenyl trimethylsilylmethyl sulphone (1) may readily be obtained by reaction of sodium thiophenolate with chloromethyltrimethylsilane followed by oxidation of the resulting sulphide ${ }^{8}$ (2), by treatment of α-lithiothioanisole with

(1)

(3)

(2)

(4)
chlorotrimethylsilane followed by oxidation ${ }^{9,10}$ or by addition of a solution of the anion generated from methyl phenyl sulphone to trimethylsilane, ${ }^{11}$ the first of these methods being more amenable to the preparation of multi-gram quantities. Treatment of a 1,2-dimethoxyethane (DME) solution of this reagent with 1 equiv. of butyl-lithium at $-78^{\circ} \mathrm{C}$ followed by quenching of the resulting pale yellow anion solution with 1 equiv. of carbonyl compound directly affords a mixture of Z and E-vinyl sulphones upon mild aqueous acidic work-up (Scheme 1), the results of which are summarised in Table 1. When tetrahydrofuran (THF) instead of DME was used as the solvent, some formation of the isomeric β, γ-unsaturated sulphones was observed; allylic sulphones are, in many cases, known to be more thermodynamically stable than their vinylic counterparts. ${ }^{12}$ Use of ether, however, permitted trapping of the intermediate alkoxide by acylation, analogous to published work on non-silylated sulphones. ${ }^{13}$ Treatment of the lithioanion derived from (1) in ether at $-78{ }^{\circ} \mathrm{C}$ with benzaldehyde followed immediately by addition of an excess of acetic anhydride or acetyl chloride gave a mixture of (E)-phenyl 2 -

Table 1.

Carbonyl Compd.	Product	Yield ${ }^{\text {a }}$ (\%)	$\begin{gathered} Z: E \\ \text { Ratio }^{b} \end{gathered}$
(5)	(6)	81	$1: 1$
(7)	(8)	84	1:1
(9)	(10)	85	1:1
(11)	(12)	70	5:3
(13)	(14)	79	3:1
(15)	(16)	50	1:1
(17)	(18)	65	1:1
(19)	(20)	74	1:1
(21)	(22)	92	1:1
(23)	(24)	92	0:100
(25)	(26) and (27	72	4:3
(28)	(29)	87	1:2

${ }^{a}$ Isolated yield; ${ }^{b}{ }^{1} \mathrm{H}$ n.m.r.

Scheme 1. Reagents: i, $\mathrm{Me}_{3} \mathrm{SiCHLi} \mathrm{SO} 2 \mathrm{Ph}, \mathrm{DME},-78^{\circ} \mathrm{C}$; ii, $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.), $20^{\circ} \mathrm{C}$

Scheme 2.
phenylvinyl sulphone and the β-acetoxy- α-silyl sulphone (3), indicated by ${ }^{1} \mathrm{H}$ n.m.r. to consist of a single diastereoisomer. Attempts to eliminate stereospecifically the elements of acetoxytrimethylsilane from (3) under a variety of conditions

Table 2. Products obtained from elimination of $\mathrm{AcOSiMe}_{3}$ from (3)

	Product Ratio ${ }^{\text {a }}$		
Reaction Conditions	$\underset{\mathrm{CHSO}_{2} \mathrm{Ph}}{(Z)-\overparen{\mathrm{PhCH}}=}$	$\begin{aligned} & (E)-\mathrm{PhCH}= \\ & \mathrm{CHSO}_{2} \mathrm{Ph} \end{aligned}$	(4)
$\mathrm{NH}_{3}, \mathrm{MeOH}, 18{ }^{\circ} \mathrm{C}, 17 \mathrm{~h}$	17	83	0
$\mathrm{KOH}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$	17	33	50
$\mathrm{KOH}, \mathrm{MeOH}, 18{ }^{\circ} \mathrm{C}, 17 \mathrm{~h}$	0	20	80
KF, DMSO	35	65	0
$\mathrm{Me}_{3} \mathrm{NBnF}$	33	67	0
${ }^{\text {a }}{ }^{1} \mathrm{H}$ N.m.r.			

(11) $X=0$
(13) $X=0$
(15) $X=0$
(12) $\mathrm{X}=\mathrm{CHSO}_{2} \mathrm{Ph}$
(14) $X=\mathrm{CHSO}_{2} \mathrm{Ph}$
(16) $X=\mathrm{CHSO}_{2} \mathrm{Ph}$
however always gave mixtures of Z - and E-vinyl sulphones, in addition to the elimination-addition product (4) when methoxide was used as the base (Table 2). This was disappointing in view of the well-precedented stereospecific anti-elimination from β-acetoxy- and β-tosyloxy sulphones to give geometrically pure vinyl sulphones, ${ }^{13,14}$ and may indicate a non-concerted $E 1_{c B}$-type mechanism in which the α-sulphonyl carbanion generated under the reaction conditions has sufficient lifetime for rotation about the $\mathrm{C}(1)-\mathrm{C}(2)$ bond to occur prior to displacement of acetate ion (Scheme 2).

Finally, it is worth noting that abstraction of an acidic $\alpha-$ proton from the carbonyl substrate may compete significantly with nucleophilic attack by the sulphone anion if the resulting enolate anion may undergo further reaction. This may explain the somewhat lower yield of vinyl sulphone realised when 4,4-dimethoxybutan-2-one was used as the substrate.

Experimental

${ }^{1}$ H N.m.r. spectra were obtained on Bruker WH-400, Bruker WH-250, JEOL FX90Q and Varian EM-360A spectrometers

(17) $x=0$
(18) $\mathrm{X}=\mathrm{CHSO}_{2} \mathrm{Ph}$

(21) $x=0$
(22) $\mathrm{X}=\mathrm{CHSO}_{2} \mathrm{Ph}$

(25) $x=0$
(26) $x=\mathrm{CHSO}_{2} \mathrm{Ph}(Z)$
(27) $x=\mathrm{CHSO}_{2} \mathrm{Ph}(E)$
on deuteriochloroform solutions with tetramethylsilane as internal standard. I.r. spectra were recorded on a Perkin-Elmer 983 G spectrophotometer as liquid films or dichloromethane solutions. Mass spectra were obtained on a VG Micromass 7070B instrument. M.p.s were determined using a Kofler hotstage apparatus and are uncorrected. Column chromatography was performed on MN-silica gel $60230-400$ mesh, under pressure. Light petroleum refers to the fraction boiling in the range $40-60^{\circ} \mathrm{C}$ and ether to diethyl ether. Solutions were dried over anhydrous sodium sulphate, and solvents by standard methods.

Preparation of Phenyl Trimethyl Sulphide (2).-To a mixture of thioanisole ($50 \mathrm{~g}, 0.4 \mathrm{~mol}$) and $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine ($47.5 \mathrm{~g}, 0.41 \mathrm{~mol}$) in dry THF (350 ml) at $40^{\circ} \mathrm{C}$ under argon was added, dropwise with stirring, butyllithium (1.5 m solution in hexane; $400 \mathrm{ml}, 0.6 \mathrm{~mol}$). The resulting pale yellow solution was maintained at $-40^{\circ} \mathrm{C}$ for 1 h and then cooled to $-60^{\circ} \mathrm{C}$. Chlorotrimethylsilane ($70 \mathrm{~g}, 0.64 \mathrm{~mol}$) in dry THF was then added with stirring, and the mixture was maintained at $-60^{\circ} \mathrm{C}$ for a further 30 min ; it was then allowed slowly to warm to room temperature during 12 h . Water (500 ml) was added with vigorous stirring, and the aqueous layer was extracted with light petroleum ($2 \times 400 \mathrm{ml}$). The combined organic layers were washed with 2 m aqueous $\mathrm{HCl}(2 \times 300 \mathrm{ml})$, saturated aqueous sodium hydrogen carbonate ($2 \times 300 \mathrm{ml}$), and brine, and dried. Evaporation of solvent followed by distillation afforded the pure product ($78.6 \mathrm{~g}, 99 \%$), b.p. $85-$ $88^{\circ} \mathrm{C}$ at 0.8 mmHg (lit., ${ }^{8}$ b.p. $158.5^{\circ} \mathrm{C}$ at 67 mmHg); $v_{\text {max. }}$ (film) 1580 (arom. $\mathrm{C=C}$), 1250 (CSi), and $845 \mathrm{~cm}^{-1}$ (CSi); $\delta(60 \mathrm{MHz})$ $0.2(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 2.2\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.0-7.5\left(5 \mathrm{H}, \mathrm{m}, \mathrm{SO}_{2} \mathrm{Ph}\right)$.

Preparation of Phenyl Trimethylsilyl Sulphone (1).-To a solution of (2) ($84.0 \mathrm{~g}, 0.43 \mathrm{~mol}$) in dichloromethane (800 ml) at $0^{\circ} \mathrm{C}$ was added, dropwise with stirring, peracetic acid (4.6M solution; $280 \mathrm{ml}, 1.29 \mathrm{~mol}$) buffered with sodium acetate trihydrate ($44 \mathrm{~g}, 0.33 \mathrm{~mol}$). Upon completion of the addition the mixture was stirred at $0^{\circ} \mathrm{C}$ for a further 90 min and then allowed to warm to room temperature during 1 h ; it was then left for 15
h. Water (500 ml) was added and the aqueous layer extracted with dichloromethane ($2 \times 400 \mathrm{ml}$). The combined organic layers were washed with 2 m -aqueous sodium hydroxide $(2 \times 200 \mathrm{ml})$ and brine and dried. Evaporation of solvent followed by distillation gave the product ($95.4 \mathrm{~g}, 96 \%$), b.p. $121^{\circ} \mathrm{C}$ at 0.01 mmHg (lit., ${ }^{8}$ b.p. $160^{\circ} \mathrm{C}$ at 6 mmHg); $v_{\text {max. }}$ (film) 3064 (sp ${ }^{2} \mathrm{CH}$), 2 959, 2903 ($\mathrm{sp}^{3} \mathrm{CH}$), 1586 (arom. $\mathrm{C}=\mathrm{C}$), and 1304 and $1146 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \delta(90 \mathrm{MHz}) 0.27(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 2.79$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}$), $7.40-7.65\left(3 \mathrm{H}, \mathrm{m}, m\right.$ - and $p-\mathrm{SO}_{2} \mathrm{Ph}$), and $7.82-$ 7.95 ($2 \mathrm{H}, \mathrm{m}, o-\mathrm{SO}_{2} \mathrm{Ph}$).

General Procedure for Olefination of Aldehydes and Ketones.To a stirred solution of (1) in dry DME ($5 \mathrm{ml} \mathrm{mmol}^{-1}$ sulphone) under argon at $-78^{\circ} \mathrm{C}$ was added, dropwise via a syringe, a solution of butyl-lithium in hexane (1.0 equiv). The pale yellow solution was maintained at $-78^{\circ} \mathrm{C}$ for 20 min after which time the carbonyl compound (1.0 equiv.) was added via a syringe, either neat or as a solution in DME. The reaction mixture was immediately allowed to warm to room temperature, whereupon aqueous ammonium chloride was added. The layers were separated, and the aqueous layer extracted with dichloromethane. The combined organic layers were dried and evaporated under reduced pressure to yield the crude product, which was purified by chromatography. Analytical samples were further purified by passage through a short column of silica gel.

4,4-Dimethylcyclohex-2-en-1-ylidenemethyl phenyl sulphone (6). $v_{\text {max. }}$. solution) 3044 ($\mathrm{sp}^{2} \mathrm{CH}$), 2 958, 2867 ($\mathrm{sp}^{3} \mathrm{CH}$), 1619 $\left(\mathrm{C}=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 1574$ (arom. $\mathrm{C}=\mathrm{C}$), 1303 and $1145 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right)$; $\delta(250 \mathrm{MHz}) 1.03(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.50-1.62(2 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}), 2.39$ and $2.90(2 \mathrm{H}$, both $\mathrm{m}, 6-\mathrm{H}), 5.85(E$-isomer; 0.5 H d, $J 10 \mathrm{~Hz}, 2-\mathrm{H}$) and 7.21 (Z-isomer; $0.5 \mathrm{H} \mathrm{dd}, J 10.0,1.0 \mathrm{~Hz}, 2$ H), $5.95-6.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHSO} \mathrm{C}_{2} \mathrm{Ph}\right.$ and $\left.3-\mathrm{H}\right), 7.50-7.65(3 \mathrm{H}, \mathrm{m}$, m - and $\left.p-\mathrm{SO}_{2} \mathrm{Ph}\right), 7.90-7.95\left(2 \mathrm{H}, \mathrm{m}, o-\mathrm{SO}_{2} \mathrm{Ph}\right) ; m / z(70 \mathrm{eV})$ $262\left(M^{+}\right)$, and $121\left(M^{+}-\mathrm{SO}_{2} \mathrm{Ph}\right)$ (Found: C, 68.45; H, 6.95; S, 11.95. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 68.67 ; \mathrm{H}, 6.92 ; \mathrm{S}, 12.22 \%$).

2,3-Epoxy-4,4-dimethylcyclohex-1-ylidenemethylphenylsulphone (8). $v_{\text {max }}$. (film) 3062 ($\mathrm{sp}^{2} \mathrm{CH}$), 2961, 2871 ($\mathrm{sp}^{3} \mathrm{CH}$), 1612 $\left(\mathrm{C}=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 1585$ (arom. $\mathrm{C}=\mathrm{C}$), $1307,1148\left(\mathrm{SO}_{2}\right)$, and $1250 \mathrm{~cm}^{-1}$ (epoxide); $\delta(400 \mathrm{MHz}) 0.98,1.04,1.09$, and 1.10 (all $\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}), 1.12-1.27(\mathrm{~m})$ and $1.42-1.54(\mathrm{~m})(2 \mathrm{H}, 5-\mathrm{H}), 2.13$ (dddd, $J 16,10.0$ and $4.5,2 \mathrm{~Hz}$), 2.25 (dddd, $J 16,7,4$, and 1 Hz), 2.59 (dddd, $J 18.5,11.5,6$, and 2.5 Hz), and 2.82 (dtd, $J 18.5,5$, and 1.5 Hz$)(2 \mathrm{H}, 6-\mathrm{H}), 3.03$ and $3.05(1 \mathrm{H}$, both d, $J 4.0 \mathrm{~Hz}, 3-\mathrm{H})$, 3.31 and $4.79(1 \mathrm{H}$, both d, $J 4 \mathrm{~Hz}, 2-\mathrm{H}), 6.41$ and $6.48(1 \mathrm{H}$, both $\mathrm{br} \mathrm{s}, \mathrm{CHSO}_{2} \mathrm{Ph}$), $7.56\left(2 \mathrm{H}, \mathrm{m}, m-\mathrm{SO}_{2} \mathrm{Ph}\right), 7.62(1 \mathrm{H}, \mathrm{m}, p-$ $\mathrm{SO}_{2} \mathrm{Ph}$), and $7.93\left(2 \mathrm{H}, \mathrm{m}, o-\mathrm{SO}_{2} \mathrm{Ph}\right) ; m / z(70 \mathrm{eV}) 278\left(M^{+}\right), 263$ $\left(M^{+}-\mathrm{Me}\right), 137\left(M^{+}-\mathrm{SO}_{2} \mathrm{Ph}\right)$, and $121\left(M^{+}-\mathrm{O}-\mathrm{SO}_{2} \mathrm{Ph}\right)$ (Found: C, 64.45; H, 6.5; S, 11.75. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$ requires C, 64.72; H, $6.52 ;$ S, 11.52%).
Cholestan-3-ylidenemethyl phenyl sulphone (10). ${ }^{15} \mathbf{v}_{\text {max. }}$ (solution) 3062 ($\mathrm{sp}^{2} \mathrm{CH}$), 2 934, 2867 ($\mathrm{sp}^{3} \mathrm{CH}$), 1620 $\left(\mathrm{C}=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 1301$, and $1144 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \delta(250 \mathrm{MHz})$ $0.65-2.40(44 \mathrm{H}, \mathrm{m}$, aliph.), 3.22 and 3.52 (2 H , both m, γ to $\left.\mathrm{SO}_{2} \mathrm{Ph}\right), 6.10-6.15(1 \mathrm{H}, \mathrm{m}, \mathrm{CHSO} 2 \mathrm{Ph}), 7.49-7.65(3 \mathrm{H}, \mathrm{m}, m-$ and $p-\mathrm{SO}_{2} \mathrm{Ph}$), and 7.88-7.93 ($2 \mathrm{H}, \mathrm{m}, o-\mathrm{SO}_{2} \mathrm{Ph}$); $m / z(70 \mathrm{eV})$ $524\left(M^{+}\right), 509\left(M^{+}-\mathrm{Me}\right), 411\left(M^{+}-\mathrm{C}_{8} \mathrm{H}_{17}\right)$, and $383\left(M^{+}\right.$ $-\mathrm{SO}_{2} \mathrm{Ph}$) (Found: $\mathrm{C}, 77.9 ; \mathrm{H}, 10.15 ; \mathrm{S}, 5.9 . \mathrm{C}_{34} \mathrm{H}_{52} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 77.81 ; \mathrm{H}, 9.99 ; \mathrm{S}, 6.11 \%$).

3-Methylbut-1-enyl phenyl sulphone (12). ${ }^{16} v_{\text {max. }}$ (film) 3059 ($\mathrm{sp}^{2} \mathrm{CH}$), 2 966, $2870\left(\mathrm{sp}^{3} \mathrm{CH}\right), 1620\left(\mathrm{C}=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 1585$ (arom. $\mathrm{C}=\mathrm{C}$), 1306 and $1148 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \delta(250 \mathrm{MHz})$ Z-isomer: $0.99(6 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}, \mathrm{Me}), 3.64$ (1 H , double septet, J $11.0,6.5 \mathrm{~Hz}, 3-\mathrm{H}), 6.02(1 \mathrm{H}, \mathrm{t}, J 11 \mathrm{~Hz}, 2-\mathrm{H}), 6.19(1 \mathrm{H}, \mathrm{dd}, J 11,1$ $\mathrm{Hz}, 1-\mathrm{H})$; E-isomer: $1.07(6 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}, \mathrm{Me}), 2.52(1 \mathrm{H}$, octet, J $6.5 \mathrm{~Hz}, 3-\mathrm{H}), 6.25(1 \mathrm{H}, \mathrm{dd}, J 15.5,2 \mathrm{~Hz}, 1-\mathrm{H}), 6.99(1 \mathrm{H}, \mathrm{dd}, J$ $15.5,6.5 \mathrm{~Hz}, 2-\mathrm{H})$; both isomers: $7.50-7.67(3 \mathrm{H}, \mathrm{m}, m$ - and p -
$\mathrm{SO}_{2} \mathrm{Ph}$), 7.85-7.95 (2 H, m, o-SO2 Ph); $m / z(70 \mathrm{eV}) 210\left(M^{+}\right)$ and $69\left(M^{+}-\mathrm{SO}_{2} \mathrm{Ph}\right)$ (Found: $\mathrm{C}, 62.9 ; \mathrm{H}, 6.7 ; \mathrm{S}, 15.25$. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$ requires C, 62.83; $\mathrm{H}, 6.71 ; \mathrm{S}, 15.25 \%$).

2-Cyclopropylprop-1-enyl phenyl sulphone (14). $v_{\text {max }}$.(film) 3061 ($\mathrm{sp}^{2} \mathrm{CH}$), 3013 (cyclopropyl CH), 2922 ($\mathrm{sp}^{3} \mathrm{CH}$), 1600 $(\mathrm{C}=\mathrm{C}), 1337$, and $1144 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \delta(250 \mathrm{MHz}) 0.65-0.92(4$ H, m, cyclopropyl ring CH_{2}); Z-isomer: $1.52(3 \mathrm{H}, \mathrm{d}, J 1.0 \mathrm{~Hz}$, $\mathrm{Me}), 2.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHC}=\mathrm{CHSO}_{2} \mathrm{Ph}\right)$; E-isomer: $1.50(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHC}=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 1.94(3 \mathrm{H}, \mathrm{d}, J 1 \mathrm{~Hz}, \mathrm{Me})$; both isomers: $6.19-6.22(1 \mathrm{H}, \mathrm{m}, \mathrm{CHSO} 2 \mathrm{Ph}), 7.49-7.65(3 \mathrm{H}, \mathrm{m}, m$ - and p $\mathrm{SO}_{2} \mathrm{Ph}$), and 7.89-7.95 ($2 \mathrm{H}, \mathrm{m}, o-\mathrm{SO}_{2} \mathrm{Ph}$); $m / z(70 \mathrm{eV}) 222$ $\left(M^{+}\right), 194\left(M^{+}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, and $81\left(M^{+}-\mathrm{SO}_{2} \mathrm{Ph}\right)$ (Found: $\mathrm{C}, 64.9 ; \mathrm{H}, 6.3 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 64.84 ; \mathrm{H}, 6.35 \%$).

2-(6 ' α-Methoxycarbonylmethyltetrahydropyran-2 β-yl)vinyl phenyl sulphone (16). $v_{\text {max. }}$ (solution) 3058 ($\mathrm{sp}^{2} \mathrm{CH}$), 2945 (sp^{3} CH), 1735 ($\mathrm{C}=0$), 1629 ($\mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{Ph}$), 1585 (arom. $\mathrm{C}=\mathrm{C}$) and 1307 and $1140 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \delta(250 \mathrm{MHz}) 1.30-1.95(6 \mathrm{H}$, m , tetrahydropyran H), 2.38 (dd, $J 15.5,4.0 \mathrm{~Hz}$), 2.47 (dd, $J 15.5$, 6.0 Hz), 2.55 (dd, $J 16.0,8.5 \mathrm{~Hz}$), 2.72 (dd, $J 16.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$), 3.62 and 3.64 (3 H , both s, COMe), and 4.08 4.20 and $4.23-4.36\left(1 \mathrm{H}\right.$, both $\left.\mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)$; Z-isomer: $5.39-5.50\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}=\mathrm{CHSO}_{2} \mathrm{Ph}\right) 6.18(1 \mathrm{H}, \mathrm{dd}, J 12,1.5$ $\mathrm{Hz}, \mathrm{CHSO}_{2} \mathrm{Ph}$), and $6.47(1 \mathrm{H}$, dd, $J 12.0,8.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}-$ $\mathrm{SO}_{2} \mathrm{Ph}$); E-isomer: 4.15-4.60 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}=\mathrm{CHSO}_{2} \mathrm{Ph}$), 6.73 (1 H , dd, $J 16.0,2.0 \mathrm{~Hz}, \mathrm{CHSO}_{2} \mathrm{Ph}$), and $6.89(1 \mathrm{H}, \mathrm{dd}, J$ $16.02 .0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{Ph}$); both isomers: $7.49-7.69(3 \mathrm{H}, \mathrm{m}$, m - and $p-\mathrm{SO}_{2} \mathrm{Ph}$), and 7.87-7.96 ($2 \mathrm{H}, \mathrm{m}, o-\mathrm{SO}_{2} \mathrm{Ph}$); $m / z(70$ $\mathrm{eV}) 324\left(\mathrm{M}^{+}\right), 264\left(M^{+}-\mathrm{HCOMe}\right), 251\left(M^{+}-\mathrm{CH}_{2} \mathrm{COMe}\right)$, and $183\left(M^{+}-\mathrm{SO}_{2} \mathrm{Ph}\right)$ (Found: $\mathrm{C}, 58.95 ; \mathrm{H}, 6.25 . \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~S}$ requires C, $59.24 ; \mathrm{H}, 6.21 \%$).

4,4-Dimethoxy-2-methylbut-1-enyl phenyl sulphone (18). $v_{\text {max. }}$ (film) 3062 ($\mathrm{sp}^{2} \mathrm{CH}$), 2939 ($\mathrm{sp}^{3} \mathrm{CH}$), 2834 (Me CH), $1625\left(\mathrm{C}=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 1585$ (arom. $\mathrm{C}=\mathrm{C}$), and 1304,1148 and $1121 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \delta(90 \mathrm{MHz}) Z$-isomer: $1.93(3 \mathrm{H}, \mathrm{d}, J 1.0 \mathrm{~Hz}$, $\left.M e=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 2.93\left(2 \mathrm{H}, \mathrm{d}, J 6.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.36(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $4.56\left[1 \mathrm{H}, \mathrm{t}, J 6.0 \mathrm{~Hz}, \mathrm{CH}(\mathrm{OMe})_{2}\right]$, and $6.18(1 \mathrm{H}$, br s, $\mathrm{CHSO}_{2} \mathrm{Ph}$), E-isomer: $2.13\left(3 \mathrm{H}, \mathrm{d}, J 1.0 \mathrm{~Hz}, \mathrm{MeC}=\mathrm{CHSO}_{2} \mathrm{Ph}\right)$, $2.38\left(2 \mathrm{H}, \mathrm{d}, J 6.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.28(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.44[1 \mathrm{H}, \mathrm{t}, J 6.0$ $\left.\mathrm{Hz}, \mathrm{CH}(\mathrm{OMe})_{2}\right]$, and $6.26\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHSO}_{2} \mathrm{Ph}\right)$; both isomers: $7.45-7.70\left(3 \mathrm{H}, \mathrm{m}, m\right.$ - and $\left.p-\mathrm{SO}_{2} \mathrm{Ph}\right)$ and $7.80-7.99(2 \mathrm{H}, \mathrm{m}$, $\left.o-\mathrm{SO}_{2} \mathrm{Ph}\right) ; m / z(70 \mathrm{eV}) 239\left(\mathrm{M}^{+}-\mathrm{OMe}\right)$ and $141\left(\mathrm{PhSO}_{2}{ }^{+}\right)$ (Found: C, 57.9; $\mathrm{H}, 6.6 . \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 57.76 ; \mathrm{H}$, 6.71%). This compound is unstable, even at $0^{\circ} \mathrm{C}$, and decomposes with double-bond migration to 4-phenylsulphonyl-3-methylbut-2-enal as a mixture of geometric isomers; $v_{\text {max. }}$ (solution) 3046 (sp ${ }^{2} \mathrm{CH}$), 2 991, 2862 , ($\mathrm{sp}^{3} \mathrm{CH}$), 2775 ($\mathrm{OC}-\mathrm{H}$), 1677 ($\mathrm{C}=\mathrm{CCHO}$), 1586 (arom. $\mathrm{C}=\mathrm{C}$), and 1322 and $1106 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \delta(250 \mathrm{MHz}) 1.13$ and $1.33(3 \mathrm{H}$, both d, $J 1.0$ $\mathrm{Hz}, \mathrm{Me})$, 3.91 and $4.34\left(2 \mathrm{H}\right.$, both s, $\mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{Ph}$), 5.59 and 6.08 (1 H , both br d, $J 8 \mathrm{~Hz}, \mathrm{CHCHO}$), $7.55-7.73$ ($3 \mathrm{H}, \mathrm{m}, m$ - and p $\left.\mathrm{SO}_{2} \mathrm{Ph}\right), 7.85-7.92\left(2 \mathrm{H}, \mathrm{m}, o-\mathrm{SO}_{2} \mathrm{Ph}\right)$, and 9.36 and $9.94(1 \mathrm{H}$, both d, $J 8 \mathrm{~Hz}, \mathrm{CHO}$); $m / z(70 \mathrm{eV}) 224\left(M^{+}\right), 195\left(M-\mathrm{SO}_{2} \mathrm{Ph}\right)$ (Found: C, $58.95 ; \mathrm{H}, 5.3 . \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 58.91 ; \mathrm{H}$, 5.39%).

5-t-Butyldimethylsilyloxyhex-1-enyl phenyl sulphone (20) $\nu_{\max }$ (film) 3063 ($\mathrm{sp}^{2} \mathrm{CH}$), 2955, 2 930, 2857 ($\mathrm{sp}^{3} \mathrm{CH}$), 1623 $\left(\mathrm{C}=\mathrm{CHSO}_{2} \mathrm{Ph}\right.$), 1585 (arom. $\mathrm{C}=\mathrm{C}$), and 1318 and $1148 \mathrm{~cm}^{-1}$ $\left(\mathrm{SO}_{2}\right) ; \delta(250 \mathrm{MHz}) 0.06(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.87$ and $0.89(9 \mathrm{H}$, both s , $\left.\mathrm{SiBu}^{\prime}\right), 1.12$ and $1.14(3 \mathrm{H}$, both d, $J 5 \mathrm{~Hz}, \mathrm{Me}), 1.46-1.60(2 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}$), $2.20-2.45$ and $2.60-2.80$ (2 H , both $\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}-$ $\mathrm{SO}_{2} \mathrm{Ph}$), $4.70-4.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOSiBu}{ }^{\mathrm{L}} \mathrm{Me}_{2}\right.$), 6.23-6.36 (m) and $7.05(\mathrm{dt}, J 16,6.5 \mathrm{~Hz})\left(2 \mathrm{H}, \mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{Ph}\right.$ and $\left.\mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 7.50-7.68\left(3 \mathrm{H}, \mathrm{m}, m-\right.$ and $\left.p-\mathrm{SO}_{2} \mathrm{Ph}\right)$, and 7.87-7.95 ($2 \mathrm{H}, \mathrm{m}, o-\mathrm{SO}_{2} \mathrm{Ph}$); $m / z(70 \mathrm{eV}) 354\left(M^{+}\right), 339$ $\left(\mathrm{M}^{+}-\mathrm{Me}\right), 297\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$, and $213\left(\mathrm{M}^{+}-\mathrm{SO}_{2} \mathrm{Ph}\right)$.

Cyclohexylidenemethyl phenyl sulphone (22). M.p. 32.5$34{ }^{\circ} \mathrm{C}$, b.p. $135^{\circ} \mathrm{C}$ at 0.001 mmHg ; $v_{\text {max. }}$ (film) $3060\left(\mathrm{sp}^{2} \mathrm{CH}\right.$), 2925,2857 (sp ${ }^{3} \mathrm{CH}$), 1620 ($\mathrm{C}=\mathrm{CHSO}_{2} \mathrm{Ph}$), 1585 (arom. $\mathrm{C}=\mathrm{C}$),
and 1310 and $1140 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \delta(90 \mathrm{MHz}) 1.58(6 \mathrm{H}, \mathrm{br}$, $3 \times \mathrm{CH}_{2}$), $2.17\left(2 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 2.70(2 \mathrm{H}, \mathrm{br}$, $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 6.16(1 \mathrm{H}, \mathrm{brs}, \mathrm{CHSO} 2 \mathrm{Ph}), 7.40-7.70(3 \mathrm{H}$, m, m - and $p-\mathrm{SO}_{2} \mathrm{Ph}$), and $7.80-8.00\left(2 \mathrm{H}, \mathrm{m}, o-\mathrm{SO}_{2} \mathrm{Ph}\right) ; m / z(70$ $\mathrm{eV}) 236\left(M^{+}\right)$and $95\left(M^{+}-\mathrm{SO}_{2} \mathrm{Ph}\right)$ (Found: C, 66.1; H, 6.95; $\mathrm{S}, 13.45 . \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 66.10 ; \mathrm{H}, 6.78 ; \mathrm{S}, 13.56 \%$).
(E)-2-(4' α-Dimethyl-t-butylsilyloxy- $1^{\prime} \alpha, 6^{\prime} \alpha$-dimethylcyclohex-$2^{\prime}$-enyl) vinyl phenyl sulphone (24). $v_{\text {max }}$ (film) $3070,3030\left(\mathrm{sp}^{2}\right.$ $\mathrm{CH}), 1620\left(\mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{Ph}\right)$, and $1140 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \delta(60 \mathrm{MHz})$ $0.09(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.84\left(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, 6^{\prime}-\mathrm{Me}\right), 0.90(9 \mathrm{H}, \mathrm{s}$, SiBu^{\prime}), 1.03 (3 H, s, 1'-Me), 0.8-1.9 (3 H, m, 5'-H, 6'H), 5.16 (1 $\left.\mathrm{H}, \mathrm{dd}, J 10,2 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 5.60\left(1 \mathrm{H}, \mathrm{brd}, J 10 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 6.13(1 \mathrm{H}$, $\mathrm{d}, J 16 \mathrm{~Hz}, 1-\mathrm{H}), 6.84(1 \mathrm{H}, \mathrm{d}, J 16 \mathrm{~Hz}, 2-\mathrm{H})$, and $7.34-7.85(5 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{SO}_{2} \mathrm{Ph}\right) ; m / z(70 \mathrm{eV}) 406\left(M^{+}\right), 391\left(M^{+}-\mathrm{Me}\right)$, and 349 ($M^{+}-\mathrm{C}_{4} \mathrm{H}_{9}$) (Found: $\mathrm{C}, 65.2 ; \mathrm{H}, 8.65 . \mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SSi}$ requires C, 64.98; H, 8.43%).
(Z)-(4'S)-2-($2^{\prime}, 2^{\prime}$-Dimethyl-1 $1^{\prime}, 3^{\prime}$-dioxolan-4'-yl)vinyl phenyl sulphone (26). $v_{\text {max. }}$ (film) 3058 (sp $^{2} \mathrm{CH}$), 2988, 2 937, 2876 (sp ${ }^{3}$ $\mathrm{CH}), 1627\left(\mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 1585$ (arom. $\mathrm{C}=\mathrm{C}$), and 1307 and $1150 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \delta(250 \mathrm{MHz}) 1.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.45(3 \mathrm{H}, \mathrm{s}$, Me), 3.77 ($1 \mathrm{H}, \mathrm{dd}, J 8.5,6.0 \mathrm{~Hz}, 5-\mathrm{H}) 4.42(1 \mathrm{H}, \mathrm{dd}, J 8.5,6.5 \mathrm{~Hz}$, $\left.5^{\prime}-\mathrm{H}\right), 5.66\left(1 \mathrm{H}, \mathrm{dt}, J 6.0,6.5 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 6.29(1 \mathrm{H}, \mathrm{dd}, J 11.0,1.0$ $\left.\mathrm{Hz}, \mathrm{CHSO}_{2} \mathrm{Ph}\right), 6.38\left(1 \mathrm{H}, \mathrm{dd}, J 11.0,6.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{Ph}\right)$, $7.55-7.70\left(3 \mathrm{H}, \mathrm{m}, m\right.$ - and $\left.p-\mathrm{SO}_{2} \mathrm{Ph}\right)$, and $7.90-7.92(2 \mathrm{H}, \mathrm{m}, o$ $\left.\mathrm{SO}_{2} \mathrm{Ph}\right) ; m / z(70 \mathrm{eV}) 268\left(M^{+}\right), 253\left(M^{+}-\mathrm{Me}\right)$, and $238\left(M^{+}\right.$ - Me) (Found: C, 58.35; H, 6.05. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}$ requires C, 58.19; H, 6.01%).
(E)-(4'S)-2-($2^{\prime}, 2^{\prime}-$ Dimethyl-1', 3^{\prime}-dioxolan-4'-yl $)$ vinyl phenyl sulphone (27). $v_{\text {max. }}$ (film) 3062 ($\mathrm{sp}^{2} \mathrm{CH}$), 2988, 2937,2881 $\left(\mathrm{sp}^{3} \mathrm{CH}\right), 1630\left(\mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 1585$ (arom. $\mathrm{C}=\mathrm{C}$), and 1308 and $1148 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \delta(250 \mathrm{MHz}) 1.37(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.40(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}), 3.70\left(1 \mathrm{H}, \mathrm{dd}, J 8.5,6.5 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 4.21(1 \mathrm{H}, \mathrm{dd}, J 8.5,6.5$ $\left.\mathrm{Hz}, 5^{\prime}-\mathrm{H}\right), 4.71\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 6.65(1 \mathrm{H}, \mathrm{dd}, J 14.5,1.0 \mathrm{~Hz}$, $\left.\mathrm{CHSO}_{2} \mathrm{Ph}\right), 6.95\left(1 \mathrm{H}, \mathrm{dd}, J 14.5,4.0 \mathrm{~Hz}, \mathrm{C} H=\mathrm{CHSO}_{2} \mathrm{Ph}\right)$, $7.52-7.67\left(3 \mathrm{H}, \mathrm{m}, m\right.$ - and $\left.\mathrm{P}-\mathrm{SO}_{2} \mathrm{Ph}\right)$, and $7.88-7.91(2 \mathrm{H}, \mathrm{m}$, $\left.o-\mathrm{SO}_{2} \mathrm{Ph}\right) ; m / z(70 \mathrm{eV}) 268\left(M^{+}\right), 253\left(M^{+}-\mathrm{Me}\right)$, and 238 $\left(M^{+}-2 \mathrm{Me}\right)$ (Found: C, 58.0; H, 6.3; S, 12.0. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 58.19 ; \mathrm{H}, 6.01 ; \mathrm{S}, 11.95 \%$).

3-Methylpent-1,3-dienyl phenyl sulphone (29). $v_{\text {max }}$ (film) 3056 ($\mathrm{sp}^{2} \mathrm{CH}$), 2919 ($\mathrm{sp}^{3} \mathrm{CH}$), 1629 (non-arom. $\mathrm{C}=\mathrm{C}$), 1590 (arom. $\mathrm{C}=\mathrm{C}$), and 1306 and $1146 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \delta(250 \mathrm{MHz}) Z, E-$ isomer: $1.68(3 \mathrm{H}$, br s, $3-\mathrm{Me}), 1.69(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, 5-\mathrm{H}), 5.90(1$ H, br q, $J 7.0 \mathrm{~Hz}, 4-\mathrm{H}), 6.24\left(1 \mathrm{H}, \mathrm{d}, J 12.0 \mathrm{~Hz}, \mathrm{CHSO}{ }_{2} \mathrm{Ph}\right), 6.47$ $\left(1 \mathrm{H}, \mathrm{d}, J 12.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{Ph}\right)$; E, E-isomer: $1.71(3 \mathrm{H}, \mathrm{br} \mathrm{s}$, $3-\mathrm{Me}), 1.83(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, 5-\mathrm{H}), 6.10(1 \mathrm{H}, \mathrm{q}, J 7.0 \mathrm{~Hz}, 4-\mathrm{H})$, $6.21\left(1 \mathrm{H}, \mathrm{d}, J 15.0 \mathrm{~Hz}, \mathrm{CHSO}_{2} \mathrm{Ph}\right), 7.30(1 \mathrm{H}, \mathrm{d}, J 15.0 \mathrm{~Hz}$, $\mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{Ph}$); both isomers: $7.48-7.63(3 \mathrm{H}, \mathrm{m}, m$ - and p $\mathrm{SO}_{2} \mathrm{Ph}$), $7.87-7.92\left(2 \mathrm{H}, \mathrm{m}, o-\mathrm{SO}_{2} \mathrm{Ph}\right) ; m / z(70 \mathrm{eV}) 222$ $\left(M^{+}\right)$and $80\left[M^{+}-\mathrm{HOS}(\mathrm{O}) \mathrm{Ph}\right]$ (Found: C, 64.9; H, 6.25. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 64.84 ; \mathrm{H}, 6.35 \%$).

1-Acetoxy-1-phenyl-2-trimethylsilylethyl phenyl sulphone (3).-To a solution of silylsulphone (1) $(5.0 \mathrm{~g}, 21.9 \mathrm{mmol})$ in dry ether (100 ml) was added butyl-lithium (1.6 m . solution in hexane; $14.1 \mathrm{ml}, 22.6 \mathrm{mmol}$) dropwise with stirring at $-78^{\circ} \mathrm{C}$ under argon. Benzaldehyde ($2.6 \mathrm{~g}, 24.5 \mathrm{mmol}$) was added, followed immediately by acetic anhydride ($4.48 \mathrm{~g}, 43.9 \mathrm{mmol}$). The mixture was allowed to warm to $-20^{\circ} \mathrm{C}$ during 1 h whereupon methanol (10 ml) followed by ether (30 ml) and water (100 ml) were added. The layers were separated and the aqueous phase extracted with dichloromethane ($2 \times 50 \mathrm{ml}$). The combined organic layers were then washed with aqueous saturated sodium hydrogen carbonate and brine, and then dried. Evaporation of solvent under reduced pressure gave a viscous oil (6.74 g). Trituration with a small amount of light petroleum and cooling gave a solid which upon recrystallisation from ether gave white crystals of the sulphone (3) $(2.9 \mathrm{~g}, 35 \%)$ as a single diastereosimer, m.p. $146-147^{\circ} \mathrm{C}$; $v_{\text {max. }}$ (solution) 1647
$(\mathrm{C}=\mathrm{O}), 1372,1305$, and $1145\left(\mathrm{SO}_{2}\right)$, and 1085 and $850 \mathrm{~cm}^{-1}$ $(\mathrm{CSi}) ; \delta(60 \mathrm{MHz}) 0.2(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 1.65(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}), 3.65(1$ $\mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}, 2-\mathrm{H}), 6.1(1 \mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}, 1-\mathrm{H}), 7.1(5 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ph})$, and $7.1-7.8\left(5 \mathrm{H}, \mathrm{m}, \mathrm{SO}_{2} \mathrm{Ph}\right)$ (Found: $\mathrm{C}, 60.45 ; \mathrm{H}, 6.55 ; \mathrm{S}, 8.3$. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{SSi}$ requires C, $60.06 ; \mathrm{H}, 6.4 ; \mathrm{S}, 8.5 \%$). Evaporation of the mother liquors from the recrystallisation gave an oil (3.7 g) which was short-path distilled to give (E)-2-phenylvinyl phenyl sulphone ($3.2 \mathrm{~g}, 60 \%$) which eventually crystallised to give a solid, m.p. $67-69^{\circ} \mathrm{C}$ (lit., ${ }^{17}$ m.p. $73.5^{\circ} \mathrm{C}$); $v_{\text {max. }}$ (film) 1612 $(\mathrm{C}=\mathrm{C}), 1438,1368,1300,1150\left(\mathrm{SO}_{2}\right), 970$, and $810 \mathrm{~cm}^{-1} ; \delta(60$ $\mathrm{MHz}) 6.9(1 \mathrm{H}, \mathrm{d}, J 15.5 \mathrm{~Hz}, 1-\mathrm{H}), 7.0-8.3(11 \mathrm{H}, \mathrm{m}$, arom. C-H and $2-\mathrm{H}$).

Acknowledgements

We acknowledge financial support for this work from the S.E.R.C. (Research Studentships to M. J. P. and N. S. S.), Pfizer Central Research, and The Royal Society of Chemistry for the William Briggs Scholarship (to D. C.).

References

1 P. D. Magnus, Tetrahedron, 1977, 33, 2019; T. Durst in 'Comprehensive Organic Chemistry, eds. D. H. R. Barton and W. D. Ollis, Pergamon, Oxford, 1979, vol 3, p. 197; J.-L. Fabre, M. Julia, and J.-N. Verpeaux, Tetrahedron Lett., 1982, 2469; J. Sumner, M. Julia, M. Launay, and J.-P. Stacino, ibid., 1982, 3265.

2 S. G. Pyne, D. C. Spellmeyer, S. Chen, and P. L. Fuchs, J. Am. Chem. Soc., 1982, 104, 5728, and previous papers in the series; G. H. Posner and D. J. Brunelle, J. Org. Chem., 1973, 38, 2747; S. Fatutta and A. Risaliti, J. Chem. Soc., Perkin Trans. 1, 1974, 2387.
3 J. J. Eisch, J. E. Galle, and L. E. Hallenbeck, J. Org. Chem., 1982, 47, 1608; L. A. Paquette and G. D. Clause, ibid., 1983, 48, 141, and references therein; J. C. Philips and M. Oku, J. Am. Chem. Soc., 1972, 94, 1012; J. Org. Chem., 1972, 37, 4479; O. de Lucchi, V. Lucchini, L. Pasquito, and G. Modena, J. Org. Chem., 1984, 49, 596.
4 M. Isobe, M. Kitamura, and T. Goto, Chem. Lett., 1980, 331; J. J. Eisch and J. E. Galle, J. Org. Chem., 1979, 44, 3279.
5 V. Fiandanese, G. Marchese, and F. Naso, Tetrahedron Lett., 1978, 5131; V. Y. Ueno, H. Setoi, and M. Okawara, Chem. Lett., 1979, 47; W. Boll, Justus Liebigs Ann. Chem., 1979, 1665; J. Hershberger and G. A. Russell, Synthesis, 1980, 475; G. Cardillo, D. Savoia, and A. Umani-Ronchi, ibid., 1975, 453; M. Mikolajczyk, A. Grzejszczak, W. Midura, and A. Zatorski, ibid., 1975, 278, and references therein; N. Kamigata, T. Narushima, H. Sawada, and M. Kobayashi, Bull. Chem. Soc. Jpn., 1984, 57, 1421; W. Sas, J. Chem. Soc., Chem Commun., 1984, 862.
6 Preliminary communication: S. V. Ley and N. S. Simpkins, J. Chem. Soc., Chem. Commun., 1983, 1281; for closely related work, see D. J. Ager, ibid., 1984, 486.
7 D. J. Peterson, J. Org. Chem., 1968, 33, 780; D. J. Ager, Synthesis, 1984, 384. For related hetero-Peterson reactions, see K. Schank and F. Schroeder, Justus Liebigs Ann. Chem., 1977, 1676; F. A. Carey and O. Hernandez, J. Org. Chem., 1973, 38, 2670; B.-T. Grobel and D. Seebach, Chem. Ber., 1977, 110, 852; D. H. Lucast and J. Wemple, Tetrahedron Lett., 1977, 1103.
8 G. D. Cooper, J. Am. Chem. Soc., 1954, 76, 3713.
9 P. J. Kocienski, Tetrahedron Lett., 1980, 1559.
10 D. J. Ager, J. Chem. Soc., Perkin Trans. 1, 1983, 1131.
11 D. Craig and S . V. Ley, unpublished results.
12 D. E. O'Connor and W. I. Lyness, J. Am. Chem. Soc., 1964, 86, 3840; C. D. Broaddus, ibid., 1966, 88, 3864; ibid., 1968, 90, 5504; J. Hine, S-M Linden, A. Wang, and V. Thiagarajan, J. Org. Chem., 1980, 45, 2821.

13 P. J. Kocienski, B. Lythgoe, and S. Ruston, J. Chem. Soc., Perkin Trans. 1, 1978, 829; P. J. Kocienski, B. Lythgoe, and D. A. Roberts, J. Chem. Soc., Perkin Trans. 1, 1978, 834.
14 M. Julia, M. Launay, J.-P. Stacino, and J.-N. Verpeaux, Tetrahedron Lett., 1982, 2465.
15 P. J. Kocienski and J. Tideswell, Synth. Commun., 1979, 9, 411.
16 J. Y. Pape and J. Simonet, Electrochim. Acta, 1978, 23, 445.
17 W. E. Truce and V. V. Badiger, J. Am. Chem. Soc., 1964, 86, 3277.
Received 4th February 1985; Paper 5/187

